skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Chen, Jingya"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. null (Ed.)
    A major problem in task-oriented conversational agents is the lack of support for the repair of conversational breakdowns. Prior studies have shown that current repair strategies for these kinds of errors are often ineffective due to: (1) the lack of transparency about the state of the system's understanding of the user's utterance; and (2) the system's limited capabilities to understand the user's verbal attempts to repair natural language understanding errors. This paper introduces SOVITE, a new multi-modal speech plus direct manipulation interface that helps users discover, identify the causes of, and recover from conversational breakdowns using the resources of existing mobile app GUIs for grounding. SOVITE displays the system's understanding of user intents using GUI screenshots, allows users to refer to third-party apps and their GUI screens in conversations as inputs for intent disambiguation, and enables users to repair breakdowns using direct manipulation on these screenshots. The results from a remote user study with 10 users using SOVITE in 7 scenarios suggested that SOVITE's approach is usable and effective. 
    more » « less
  2. We argue that a key challenge in enabling usable and useful interactive task learning for intelligent agents is to facilitate effective Human-AI collaboration. We reflect on our past 5 years of efforts on designing, developing and studying the SUGILITE system, discuss the issues on incorporating recent advances in AI with HCI principles in mixed-initiative interactions and multimodal interactions, and summarize the lessons we learned. Lastly, we identify several challenges and opportunities, and describe our ongoing work. 
    more » « less